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Numerical calculation of w,

In the finished outbreak scenario, the probability of being excluded, which means being
unsampled and having all descendants unsampled, is given in Equation 2. We calculate w,
numerically by solving Equation 2 using the R command uniroot over the interval [0,1].

Numerical approach to w;

In the ongoing outbreak scenario, let w; be the probability of being excluded, which means being
unsampled and having all descendants unsampled, conditional on being infected at time ¢. As
t — —00, w¢ — ws which is the solution to Equation 2 described above. However, as the study
ends at a finite time T', we know that wp = 1 because a case infected at T will be excluded.

We do not know the times of an individual’s descendants, but we still condition on the total
number of descendants. Integrating those out, we have

) k 0o
wp = (1—m) kz_oa H [/ — tw,, d; (S1)

Let the term in square brackets be w;. We need to determine what this function is because
ultimately, we need it to compute the probability of having k£ included descendants.

We have (with G the probability generating function of the negative binomial offspring
distribution, and p and r its parameters)

wt:(l—m)G(o_Jt):(l—m)< 1=p > (52)

1 — pio;
We have wy =1 for t > T, so
00 T 00
W = / y(r = t)w(r)dr = / Y(1T — t)w(T)dT + / y(T —t)dr
t t T

We substitute this into Equation S2. We use the trapezoid method for the first term, and the
second term we can compute explicitly: f;it v(u)du = F(t). Let t; =T — iAt. The trapezoid
method gives:

/T (T — t)w dmzm (k — i) At)w(t;) At

where ¢; = 1 unless ¢ = 0 or @ = k, where ¢; = 1/2. The k’th term drops out because v(0) = 0
by assumption, so:

1 . T
w(ty) ~ (1 —m) ( : )
1—pF(t) - p X5, Cﬁ(( — i) At)w(t;) At
This is straightforward to compute with iteration. We find that w; — w, as t — —oo. This

gives the probability of being excluded (ie being unsampled and having no sampled descendants),
conditional on having been infected at time ¢.

(S3)
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Figure S1. Equivalent to Figure 2 when analysing a simulated dataset with only n = 40
sampled individuals, 7 = 0.5 and R = 2.
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Figure S2. Phylogenetic tree used in the tuberculosis application. This tree was computed
using maximum clade credibility (MCC) on the posterior sample of trees returned by BEAST.
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Figure S3. Comparison of transmission results based on the maximum clade credibility
(MCC) tree and a sample of 100 posterior trees. For a given transmission tree, the
“transmission distance” between two sampled individuals is defined as the sum of the two
sampling dates minus twice the date of infection of most recent common infector. This
distance is shown for all pairs of sampled individuals in the output based on the MCC tree
(x-axis) and averaged in outputs based on a sample of 100 posterior trees (y-axis).
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Figure S4. MCMC traces in the
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tuberculosis application.
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Figure S5. Posterior predictive distribution for the number of observed cases in the
tuberculosis application, with the dotted line representing the actual number of observed cases.
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Figure S6. Test of bias in inference of early unsampled cases. This figure is based on the set
of 100 simulations used for Figure 4 where the sampling probability is 7 = 0.5 and the
reproduction number R is varied between 1 and 11 (x-axis). For each of these simulations, we
calculated the inferred number of unsampled individuals amongst the first 10 cases of the
outbreak (y-axis).



o o
o
o
o —_—
— ' ° 0 | '
, —_ - |
' T ,
3 : :
o | 1 : 1
- ! ' o '
[} o L] g
.
=
T
© '
e '
' ' o | '
o ' | ° |
' '
8 ‘ ‘ ‘
- © ' —_— '
o o 7 .
Q | 2 |
2 R o | R
o o
B T T T T
(%)
€ Smear + Smear - HIV+ HIV-
%]
c
8
i o~ ° o~ °
5 - o Al o
— ° ° ° °
o —_ —_
o < | ' ] !
g = ' j 3 ' '
' ' ] '
S ' ' ' '
Z o , ' 1) , .
=7 : ' =7 : ;
. ' , '
o " (=2} "
c 7 c 7
© | T @ T
IS} J IS} j
! \ ? !
~ ' ' ~ ' '
S 1 w S : ‘
' ' ' '
o | % : o — !
o ° ' (=] ° !
v | . o | :
o o
T T T T
AOD no AOD Residence No residence

Figure S7. How direct transmissions among sampled cases are affected by potential risk
factors. Among the inferred transmission events between sampled individuals, we computed
the number of transmissions by (eg) smear-positive and smear-negative individuals divided by
the number of smear-positive and -negative individuals to obtain a per-individual average
number of transmissions. We computed this for 1000 samples from the posterior MCMC chain
(chosen uniformly at random from the latter half of the posterior).



